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Abstract: In this paper, we investigate the inverse construction of complete (k,n) —arcs in
the three-dimensional projective space PG(3,7) over the Galois field GF(7). The method is
based on systematically deleting selected points from maximal arcs of order m, where m =
n+1and3 <n<q?+ q, with arc sizes restricted byk < 400. Using this approach, we
construct a full hierarchy of complete arcs, ranging from the maximal case (400, 57) down
to the minimal configuration. Furthermore, a geometric proof is provided to show that the
smallest possible complete (k,n)-arc in PG(3,7) is uniquely realized as a (5,3) —arc. The
results extend the known classifications of arcs in finite projective spaces and offer a
systematic framework for their inverse construction and analysis.
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1. Introduction

Finite projective spaces and their arc structures constitute a central topic in combinatorial
geometry and finite field theory, with important connections to coding theory and discrete
mathematics. In particular, the study of (k,n)-arcs in projective spaces has attracted significant
attention due to their rich geometric properties and their role in the classification of point sets

with restricted intersection numbers.

Several researchers have contributed to this field. Ahmed et al. (2002)[5] investigated maximal
arcs in the projective plane PG(2,7) over the Galois field GF(7).Later, Ismael (2005)[8]
constructed complete (k,n)-arcs in PG(2,13). Al-Mukhtar (2008)[4] extended these results by
proving completeness conditions of (k,n)-arcs in PG(3,q) for g=2,3, 5, within the range
3<n<q2+q+1. More recently, Kareem (2013)[1] examined projectively distinct (k,n)-arcs in
PG(3,4) over GF(4). These works highlight the progressive development of the theory of arcs in

finite projective spaces.

The present paper continues this line of research by focusing on the inverse construction of
complete (k,n)-arcs in PG(3,7). The paper is organized into three sections. Section 1 recalls the

fundamental theorems and definitions of the three-dimensional projective space PG(3,q). Section
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2 develops the inverse construction method for complete (k,n)-arcs with 3<n<57. Section 3
provides summary tables presenting the entire spectrum of reverse constructions of complete arcs
in PG (3, 7). The results obtained in this study not only expand the classification of arcs in finite
projective spaces but also provide a systematic framework for understanding their inverse

generation.

2. The Fundamental Theorems and Definitions Pertaining to Projective 3-space
PG(3,9).
2.1 Definition 1[6] Projective 3-Space PG (3, q)
The three-dimensional projective space PG (3, g) over the Galois field GF (q) (where g = p for
prime p and integer m > 1) is a geometric structure comprising points, lines, and planes governed
by these fundamental axioms:
Incidence Axioms:
1. Line Uniqueness: Exactly one line passes through any two distinct points.
2. Plane Uniqueness:
A. There exists a unique plane containing any three non-collinear points
B. A unique plane contains any given line and point not on it.

4. Line Intersection: Two distinct coplanar lines meet at exactly one point.
5. Line-Plane Intersection: A line not contained in a plane intersects it at precisely one point.
6. Plane Intersection: Two distinct planes intersect along exactly one line.
2.2 Coordinate Representation:
Points: Represented by homogeneous quadruples (U:,U2,Us,Us) € GF(q)*{(0,0,0,0)}, where two
quadruples denote the same point if f they are scalar multiples (related by non-zero t € GF(Q)).
Planes: Represented by dual homogeneous coordinates [a: ,az ,as ,as] € GF (q) {(0, 0, 0, 0)}, with
scalar multiples identifying the same plane.
Incidence Condition:
A point N(U1,U2,Us,U.) lies on plane n[a: ,az ,as ,a4] if and only if their dot product vanishes: a:
UitaUz+asUs+asUs=0.
2.3 Definition 2[7] Plane m[3]

In PG (3, 0), a plane = is defined as the solution set to the homogeneous linear equation Ui X
+ UaXa + UsXs + UaXs = 0, where [X1,X2,X3,X4] are coefficients in GF(q) (not all zero). This
plane is denoted 7 X1,X2,X3,Xa].
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2.4 Theorems and Definitions
Theorem1 [4]: In PG(3,q), points admit a canonical representation through four distinct forms:
A. A unique point (1,0,0,0),
B. g points of type (U,1,0,0),
C. ¢?points of form (U,V,1,0),
D. g2 points (U,V,W,1) where parameters U,V,W range over GF(q).
Theorem 2[4]: The projective space PG(3,q) contains planes classified into four distinct types
based on their parametric forms:
A. asingle plane [1,0,0,0],
B. g planes of type [U,1,0,0],
C. ¢?planes of form [U,V,1,0],
D. @3 planes [U,V,W,1], with parameters U,V,W ranging over GF(q).
Corollary 1[4]: The projective space PG (3, q) contains exactly ¢® + g2 + g + 1 points and an
equal number of planes.
Theorem 3[4]: Three-dimensional projective space over GF(q) exhibits perfect duality - the
number of points in any plane (g2 + g + 1) equals the number of planes through any point.
Theorem 4[4]: In 3-dimensional projective space over GF(q), all lines are uniform with g+1
incident points, while all points uniformly lie on exactly g+1 lines each.
Corollary 2[4]: In PG (3, q), the intersection of any two planes forms a line containing exactly
g+1 points. Dually, any two points lie on exactly g+1 common plane. Furthermore, each line is
contained in precisely g+1 plane.
Definition 3[3] :"'(k ,n) — arcs" In 3-dimensional projective space over GF(q), a (k, n)-arc is a
point set of size k with the property that every plane intersects it in at most n points (where n > 3).
The parameter n is known as the arc's degree.
Definition 4[1]: In PG(3,q), for any point set k of size k, an n-secant is a line or plane £
intersecting k in exactly n points. Special cases include:

1. secant: external line/plane (empty intersection)

2. secant: unisecant line/plane (tangent)

3. secant: bisecant line

4. secant: trisecant line.
Definition 5[1]: A point N, not lying on a (k, n)-arc, is said to have index i if exactly i of the n-

secants of K pass through N. The number of such points with index i is denoted by C..
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Remarkl [2]: A (k, n)-arc A is complete if and only if Co=0, which is equivalent to the
condition that every point in PG(3, q) is incident with some
N-secant line of the (k, n)-set.
Definition 6[2]: Let T; denote the total count of i-secant planes to a (k, n)-arc A. The plane
intersection type of A is then represented by the ordered sequence (Ta, To-1, Tu, ..., To). The
type m of A is defined as
m=min {i|Ti#0} ,

That is, the least index i where Ti is non-zero.
Definition 7[4]: Two arcs A (a (ki, n)-arc) and B (a (kz, n)-arc) are said to have the same type if
and only if their intersection profiles match completely, that is, T; = S; for all i = n,...,0. In such
cases, the arcs are protectively equivalent.
Theorem 5[4]: Let T; denote the count of i-secant planes to the arc A in PG(3,q), where:

A. T2 counts bisecants

B. T counts unisecants

C. To counts external planes (with b=q + 2 - k)
The following relations hold:

A. The number of unisecants is Ti=k- b

B. The number of bisecants is T> = C(k,2) = k(k-1)/2

C. The number of trisecants is Ts = C(k,3) = k(k-1)(k-2)/6

D. For general n-secants: T, = C(k, n) = k!/(n!(k-n)!)

E. External planes satisfy:

To= (g>+q*+q+1) - Zi= T

Theorem 6[4]: Let C; represent the count of points with index i in PG(3,q) that are not contained
in a (k, n)-arc A. Then the following equations govern these constants:

1. The total number of external points satisfies:

Shci=q+g+q+1-k
2. The weighted sum of indices satisfies:

iici_k(k— .. k-n+1)(q%+ q + 1-1n)

n!

a

Here o= min{i | C;i # 0} and p = max{i | Ci # 0} represent respectively the minimal and maximal

indices for which C; is non-zero.
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Theorem 7[1]: A (k, n)-arc A in PG(3, g) is maximum if and only if every line in PG(3, q)

intersects A in either O or n points.

3. Reverse construction of complete (k, n) —arcs in PG(3,7)

In this section, a method for constructing complete (k,n)-arcs in PG(3,7) is presented. This is
achieved by selectively removing specific points from existing complete arcs that possess a
higher degree, denoted as m, where the relationship m=n+1 holds. The parameter n is

constrained to the range 3<n<57, and the resulting arcs have a size k that does not exceed 400.

Furthermore, a geometric proof is provided to establish that the smallest possible complete (k,n)-
arc in PG(3,7) is uniquely characterized as the (5,3)-arc. This conclusion is substantiated through
the following reasoning[5,9,10]:

3.1 The complete (k,57) —arc in PG(3,7)
In the projective space PG(3,7), the configuration consists of 400 points and 400 planes, governed
by the following fundamental properties:
A. The incidence structure is uniform: every point is incident with 57 planes, and conversely,
every plane contains 57 points.
B. The structure of lines is uniform as well: each line comprises exactly 8 points and is
simultaneously the intersection of 8 planes
given this symmetric structure, the largest possible complete (k, 57)-arc, denoted A, is
attained when its size k is 400. This maximal arc is formed by the entire set of points in the
space. The reasoning is that since every plane already contains the maximum of 57 points
from this set, no additional point can be excluded without violating the arc's completeness. In
other words, there are no points with an index of zero relative to the set A:.
Consequently, the set A: = {1, 2,..., 400}, encompassing all 400 points of PG(3,7), itself
constitutes the complete (400, 57)-arc [5].
3.2 The Construction of Complete (k,56) — arc in PG(3,7)
A complete (382, 56)-arc Az can be derived from the complete (400, 57)-arc A: in PG (3, 7) by

removing 18 specific points from A., namely:

Pi=[3,4,5,6,7,8,10,11, 12, 13, 14, 15, 16, 23, 30, 37, 44, 51].
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This construction ensures that:
A. A>=A:\Pi (i.e., Az consists of all points in A: except those in P1).
B. Every plane intersects A in at most 56 points, reducing the intersection size from 57.
C. Every point not in Az lies on at least one 56-secant, a plane intersecting A- in exactly 56
points.
Thus, A: is a complete (382, 56)-arc in PG (3, 7)[9].
3.3 The Construction of Complete (k,55) —arc in PG(3,7)
A complete (371,55)-arc As can be formed in the projective space PG(3,7) by removing 11
additional points from the previously defined (382,56)-arc Az. The excluded points are:
P.=1[17,18, 19, 20, 21, 22, 24, 31, 38, 45, 52].
This yields the new arc:
As=A:\ (P1 UP,),
Where A. is the original (400, 57)-arc and P: was the first set of 18 removed points. Key
Properties of As:
1. No External Points Are Excluded:

Every point not in As lies on at least one 55-secant plane (i.e., no points have an index of zero).
2. Plane Intersection Constraint:

Any plane in PG(3,7) intersects As in at most 55 points ,reduced from 56 in A..

Thus, As is a complete (371,55)-arc, demonstrating a further refinement of the initial arc

structure.

3.4 The Construction of Complete (k, 54) —arc in PG (3, 7)
The complete (371,55)-arc As in PG(3,7) can be further reduced to construct a complete (362,54)-
arc As by removing 9 specified points from As, namely:
P> =25, 26,27, 28, 29, 32, 39, 46, 53].
This produces the new arc:
As=A\(P1UP2UPs),
Where:
1. Auisthe original (400,57)-arc,
2. P: (18 points) and P (11 points) were previously removed to obtain A2 and As
Respectively
Essential Properties of A4:

1. Completeness Condition:
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Every point not in A4 lies on at least one 54-secant plane (ensuring no points have index zero).
2. Intersection Bound:
Every plane in PG(3,7) meets Asinat most 54 points (strictly enforcing the arc's defining
property).Thus, A4 is a complete (362,54)-arc, demonstrating another step in the progressive
refinement of the initial arc structure.
3.5 Constructing a Complete (355, 53)-arc in PG (3, 7):
In this section, we derive the complete (355,53)-arc, denoted as ASA_5Ab5, in the projective
space PG(3,7) by eliminating seven specific points from the previously constructed (362,54)-
arc A,. The points to be excluded are:
P4 =[33, 34, 35, 36, 40, 47, 54].
Thus, the resulting arc As is defined as:
As=A\(PrUP2UPsUP.),
Where:
1. A.isthe original (400,57)-arc,
2. P, P, Ps are the sets of points removed in prior steps to construct Az, As, and Aa,
respectively.

Critical Properties of As:

1. Completeness Guarantee:

Every point outside A5 lies on at least one 53-secant plane, ensuring there are no points of index

zero (i.e., all points outside of A5 are covered within the plane structure).

2. Intersection Constraint:

Each plane in PG (3, 7) intersects A5 in no more than 53 points, maintaining the arc's defining
properties. This ensures that A5 is a complete (355, 53)-arc, representing an iterative refinement

of the initial arc structure.

3.6 Constructing a Complete (350, 52)-arc in PG(3,7):
The complete (355,53)-arc Ag in PG(3,7) can be further refined to construct a complete (350,52)-
arc Aq by removing 5 specified points from As:

Ps=[41, 42, 43, 48, 55].

Thus, the resulting arc A is defined as:
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As=Ai1\(P1UP2UP;UPsU Ps),
where:
1. A: represents the original (400,57)-arc,
2. P through P4 denote the point sets removed in previous construction steps.
Fundamental Properties of As:
1. Coverage Property:
Every point not contained in As lies on at least one 52-secant plane, guaranteeing that no
points have index zero (complete coverage).
2. Intersection Property:
Every plane in PG (3, 7) intersects Aq in at most 52 points, maintaining the arc's defining
characteristic. This construction yields As as a complete (350, 52)-arc, representing another
systematic reduction of the initial arc configuration.
3.7 Constructing a Complete (347, 51)-arc in PG(3,7):
By removing the final three points from the (350, 52)-arc A,, we obtain the complete

(347,51)-arc A, The points to be excluded are:

Pe = [49, 50, 56] .

This yields the terminal arc configuration:

A7=A1\(P1UP2UPsU P4 U Ps U Pe)
Where:
1. A is the foundational (400,57)-arc

2. Pithrough Ps are the sets of points removed in previous steps.

Verification of Arc Properties:
1. Completeness Criterion:
a. All points outside A lie on at least one 51-secant plane, guaranteeing full coverage.
b. No points exhibit index zero relative to A-, ensuring that all points are properly accounted
for.
2. Dimensional Constraint:
Every plane in PG (3, 7) intersects A7 in at most 51 points

This systematic reduction process continues iteratively until we ultimately obtain:
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3.8 The Construction of Complete (k, 3) —arcs in PG (3, 7)
The final (5, 3)-arc, denoted as Asg, is derived from the (6,4)-arc As, by removing a specific
point P55={400}. This operation results in:
Ass=A\(P1UPU ... UPss) = {1, 2,9, 58, 115}
This construction satisfies the following criteria:
1. Intersection Bound:
All planes in PG (3, 7) meet Ass in at most 3 points
2. Completeness Criterion:
A. Every point outside Ass lies on at least one 3-secant plane
B. No points exist with index zero relative to Ass
We establish through geometric reasoning that the configuration adheres to the rules of
completeness and intersection.

1. Minimality Proof:

The (5,3)-arc constitutes the smallest possible complete configuration in PG(3,7)
No complete (k, n)-arc exists with k < 5 while satisfying n >3

Complete Arc Spectrum:

The projective space admits complete arcs across the range 3 <n <57

> N W »

The maximal case is the (400,57)-arc (trivially comprising all points)
C. Intermediate configurations follow the progression shown in Table 1

3. Existence Verification:

Each (k, n)-arc in the hierarchy satisfies:

A. Intersection condition: V planes z, [t N A|<n

B. Completeness condition: v p € A, 3 secant plane with exactly n points[7,9,10].
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points n arcs parts
3 4 5 6 7 8 10 11 12 13
14 15 16 23 30 37 44 51

18 382 56

17 18 19 20 21 22 24 31 38 45

11 371 55

52
25 | 26 | 27 [ 28 | 29 [ 32 | 39 | 46 | 53 | | 9 [ 362 ] sa 1
33 | 38 | 35 | 36 | a0 | a7 [ 54 | ] | [ 7 [ 355 [ 53
a1 | 42 | a3 | a8 | 55 | | | | | | 5 [ 350 ] 52
49 | 50 [ 56 | | | | | [ | [ 3 [3a7 ] s

57 59 60 61 62 63 64 65 72 79
86 93 100 107 156 205 254 303 352

19 328 50

66 67 68 69 70 71 73 80 87 94
101 108 157 206 255 304 353

17 311 49

74 75 76 77 78 81 88 95 102 109
158 207 256 305 354

15 296 48

2
82 83 84 | ss5 89 9 [ 103 [ 110 [ 159 [208 | [ o0 | 4

257 | 306 | 355

90 | 91 92 97 [ 104 | 111 [ 160 | 209 [ 258 [ 307 [ .. [ 55 | 46

356

98 | 99 [ 105 | 112 | 161 [ 210 | 259 | 308 [ 357 | [ 9 [ 263 ] as

106 | 113 | 162 | 211 | 260 | 309 | 358 | \ | [ 7 [ 256 | aa

121 [ 128 [ 135 [ 142 [ 149 [ 114 [ 163 [ 212 [ 261 [ 310 | . [, | 45

359

122 [ 129 [ 136 [ 143 [ 150 | 116 | 164 [ 213 [ 262 [ 311 [ .. [ o0 | o4y

360

123 [ 130 [ 137 [ 144 [ 151 [ 117 [ 165 [ 214 [ 263 [ 312 [ . [ .. [

361

124 [ 131 [ 138 [ 145 [ 152 | 118 [ 166 | 215 [ 264 [ 313 [ [ ,0 [ 4 5

362

125 132 139 146 153 119 167 216 265 314
363

11 201 39

126 133 140 147 154 120 168 217 266 315
364

11 190 38

127 134 141 148 155 169 170 218 267 316
365

11 179 37

10

—
| —
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177 184 191 198 171 219 268 317 366 9 170 36

178 185 192 199 172 220 269 318 367 9 161 35

179 186 193 200 173 221 270 319 368 9 152 34

180 187 194 201 174 222 271 320 369 9 143 33 4
181 188 195 202 175 223 272 321 370 9 134 32

182 189 196 203 176 224 273 322 371 9 125 31

183 190 197 203 226 225 274 323 372 9 116 30

233 240 247 227 275 324 373 7 109 29

234 241 248 228 276 325 374 7 102 28

235 242 249 229 277 326 375 7 95 27

236 243 250 230 278 327 376 7 88 26 5
237 244 251 231 279 328 377 7 81 25

238 245 252 232 280 329 378 7 74 24

239 246 253 282 281 330 379 7 67 23

289 296 283 331 380 5 62 22

290 297 284 332 381 5 57 21

291 298 285 333 382 5 52 20

292 299 286 334 383 5 47 19 6
293 300 287 335 384 5 42 18

294 301 288 336 385 5 37 17

295 302 338 337 386 5 32 16

339 345 387 3 29 15

340 346 388 3 26 14

341 347 389 3 23 13

342 348 390 3 20 12 7
343 349 391 3 17 11

344 350 392 3 14 10

394 351 393 3 11 9

395 1 10 8

396 1 9 7

397 1 8 6 3
398 1 7 5

399 1 6 4

400 1 5 3

Table 1.Finding the different coverings of the three-dimensional projective space over the
finite field

—

11

—t
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i 1 2 3 400
1 0 1 6
Pi 0 1 1 6
0 0 0 6
0 0 0 1
2 1 8 8
9 9 9 15
16 10 22 21
23 11 28 27
30 12 34 33
37 13 40 39
44 14 46 45
51 15 52 51
58 58 58 59
65 59 71 65
72 60 77 78
79 61 83 84
86 62 89 90
93 63 95 96
100 64 101 102
107 107 107 107
114 108 120 120
121 109 126 126
128 110 132 132
Lines 135 111 138 138
142 112 144 144
149 113 150 150
156 156 156 162
163 157 169 168
170 158 175 174
177 159 181 180
184 160 187 186
191 161 193 192
198 162 199 198
205 205 205 210
212 206 218 216
219 207 224 222
226 208 230 228
233 209 236 234
240 210 242 240
247 211 248 253
254 254 254 258
261 255 267 264
268 256 27?: 270

12
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275 257 279 276
282 258 285 282
289 259 291 295
296 260 297 301
303 303 303 306
310 304 316 312
317 305 322 318
324 306 328 324
331 307 334 337
338 308 340 343
345 309 346 349
352 352 352 354
359 353 365 360
366 354 371 366
373 355 377 379
380 356 383 385
387 357 389 391
394 358 395 397

Table 2. Lines and planes of the three-dimensional projective space over the finite field

Conclusion

In this paper, we presented the inverse construction method for complete (k, n)-arcs in the

projective 3-space PG(3,7) over the Galois field GF(7). We constructed a full hierarchy of

complete arcs, ranging from the maximal case (400, 57) down to the minimal configuration. A

geometric proof was provided to show that the smallest possible complete (k, n)-arc in PG(3,7) is

uniquely realized as a (5,3)-arc. This method extends the existing classifications of arcs in finite

projective spaces and offers a systematic framework for their inverse construction and analysis.
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