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Abstract: In this paper, we investigate the inverse construction of complete (𝒌, 𝒏) −arcs in 

the three-dimensional projective space 𝑷𝑮(𝟑, 𝟕) over the Galois field 𝑮𝑭(𝟕). The method is 

based on systematically deleting selected points from maximal arcs of order m, where 𝒎 =
𝒏 + 𝟏 and 𝟑 ≤ 𝒏 ≤ 𝒒𝟐 +  𝒒, with arc sizes restricted by𝒌 ≤ 𝟒𝟎𝟎. Using this approach, we 

construct a full hierarchy of complete arcs, ranging from the maximal case (400, 57) down 

to the minimal configuration. Furthermore, a geometric proof is provided to show that the 

smallest possible complete (k,n)-arc in 𝑷𝑮(𝟑, 𝟕) is uniquely realized as a (𝟓, 𝟑) −arc. The 

results extend the known classifications of arcs in finite projective spaces and offer a 

systematic framework for their inverse construction and analysis.  
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1. Introduction 

       Finite projective spaces and their arc structures constitute a central topic in combinatorial 

geometry and finite field theory, with important connections to coding theory and discrete 

mathematics. In particular, the study of (k,n)-arcs in projective spaces has attracted significant 

attention due to their rich geometric properties and their role in the classification of point sets 

with restricted intersection numbers. 

Several researchers have contributed to this field. Ahmed et al. (2002)[5] investigated maximal 

arcs in the projective plane PG(2,7) over the Galois field GF(7).Later, Ismael (2005)[8] 

constructed complete (k,n)-arcs in PG(2,13). Al-Mukhtar (2008)[4] extended these results by 

proving completeness conditions of (k,n)-arcs in PG(3,q) for q=2,3, 5, within the range 

3≤n≤q2+q+1. More recently, Kareem (2013)[1] examined projectively distinct (k,n)-arcs in 

PG(3,4) over GF(4). These works highlight the progressive development of the theory of arcs in 

finite projective spaces. 

The present paper continues this line of research by focusing on the inverse construction of 

complete (k,n)-arcs in PG(3,7). The paper is organized into three sections. Section 1 recalls the 

fundamental theorems and definitions of the three-dimensional projective space PG(3,q). Section 



 
 

 

Vol (2), Issue (3), 2025   
 
International Journal of Innovative Insights in the Social and Natural Sciences                      

2 

ISSN (P): 2960-1347          ISSN (O): 2960-1355 

 

2 develops the inverse construction method for complete (k,n)-arcs with 3≤n≤57. Section 3 

provides summary tables presenting the entire spectrum of reverse constructions of complete arcs 

in PG (3, 7). The results obtained in this study not only expand the classification of arcs in finite 

projective spaces but also provide a systematic framework for understanding their inverse 

generation. 

2. The Fundamental Theorems and Definitions Pertaining to Projective 3-space 

PG(3,q). 

2.1 Definition 1[6] Projective 3-Space PG (3, q)  

The three-dimensional projective space PG (3, q) over the Galois field GF (q) (where q = pᵐ for 

prime p and integer m ≥ 1) is a geometric structure comprising points, lines, and planes governed 

by these fundamental axioms:  

Incidence Axioms: 

1. Line Uniqueness: Exactly one line passes through any two distinct points.  

2. Plane Uniqueness: 

A. There exists a unique plane containing any three  non-collinear points   

B. A unique plane contains any given line and point not on it.  

4. Line Intersection: Two distinct coplanar lines meet at exactly one point.  

5. Line-Plane Intersection: A line not contained in a plane intersects it at precisely one point.  

6. Plane Intersection: Two distinct planes intersect along exactly one line. 

2.2 Coordinate Representation: 

Points: Represented by homogeneous quadruples (U₁,U₂,U₃,U₄) ∈ GF(q)⁴{(0,0,0,0)}, where two 

quadruples denote the same point if f they are scalar multiples (related by non-zero t ∈ GF(q)). 

Planes: Represented by dual homogeneous coordinates [a₁ ,a₂ ,a₃ ,a₄] ∈ GF (q) ⁴{(0, 0, 0, 0)}, with 

scalar multiples identifying the same plane. 

Incidence Condition: 

A point N(U₁,U₂,U₃,U₄) lies on plane π[a₁ ,a₂ ,a₃ ,a₄] if and only if their dot product vanishes: a₁ 

U₁ + a₂ U₂ + a₃ U₃ + a₄ U₄ = 0. 

2.3 Definition 2[7] Plane 𝝅[3] 

     In PG (3, q), a plane π is defined as the solution set to the homogeneous linear equation U₁X₁ 

+ U₂X₂ + U₃X₃ + U₄X₄ = 0, where [X₁,X₂,X₃,X₄] are coefficients in GF(q) (not all zero). This 

plane is denoted π[X₁,X₂,X₃,X₄]. 
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2.4 Theorems and Definitions 

Theorem1 [4]: In PG(3,q), points admit a canonical representation through four distinct forms:  

A. A unique point (1,0,0,0),  

B. q points of type (U,1,0,0),  

C. q² points of form (U,V,1,0),  

D. q³ points (U,V,W,1) where parameters U,V,W range over GF(q). 

Theorem 2[4]: The projective space PG(3,q) contains planes classified into four distinct types 

based on their parametric forms:  

A. a single plane [1,0,0,0], 

B. q planes of type [U,1,0,0], 

C. q² planes of form [U,V,1,0],  

D. q³ planes [U,V,W,1], with parameters U,V,W ranging over GF(q). 

Corollary 1[4]: The projective space PG (3, q) contains exactly q³ + q² + q + 1 points and an 

equal number of planes. 

Theorem 3[4]: Three-dimensional projective space over GF(q) exhibits perfect duality - the 

number of points in any plane (q² + q + 1) equals the number of planes through any point. 

Theorem 4[4]: In 3-dimensional projective space over GF(q), all lines are uniform with q+1 

incident points, while all points uniformly lie on exactly q+1 lines each. 

Corollary 2[4]: In PG (3, q), the intersection of any two planes forms a line containing exactly 

q+1 points. Dually, any two points lie on exactly q+1 common plane. Furthermore, each line is 

contained in precisely q+1 plane. 

Definition  3[3] :"(k ,n) – arcs" In 3-dimensional projective space over GF(q), a (k, n)-arc is a 

point set of size k with the property that every plane intersects it in at most n points (where n ≥ 3). 

The parameter n is known as the arc's degree. 

Definition 4[1]: In PG(3,q), for any point set k of size k, an n-secant is a line or plane ℓ 

intersecting k in exactly n points. Special cases include: 

1. secant: external line/plane (empty intersection)  

2. secant: unisecant line/plane (tangent)   

3. secant: bisecant line   

4. secant: trisecant line. 

Definition  5[1]: A point N, not lying on a (k, n)-arc, is said to have index i if exactly i of the n-

secants of K pass through N. The number of such points with index i is denoted by Cᵢ. 
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Remark1 [2]: A (k, n)-arc A is complete if and only if C0=0 , which is equivalent to the 

condition that every point in PG(3, q) is incident with some  

N-secant line of the (k, n)-set. 

Definition  6[2]: Let Tᵢ denote the total count of i-secant planes to a (k,  n)-arc A. The plane 

intersection type of A is then represented by the ordered sequence (Tₙ, Tₙ₋₁, Tₙ₋₂, ..., T₀). The 

type m of A is defined as  

m=min {i∣Ti≠0} , 

That is, the least index i where Ti is non-zero. 

Definition  7[4]: Two arcs A (a (k₁, n)-arc) and B (a (k₂, n)-arc) are said to have the same type if 

and only if their intersection profiles match completely, that is, Tᵢ = Sᵢ for all i = n,...,0. In such 

cases, the arcs are protectively equivalent. 

Theorem 5[4]: Let Tᵢ denote the count of i-secant planes to the arc A in PG(3,q), where: 

A. T₂ counts bisecants 

B. T₁ counts unisecants 

C. T₀ counts external planes (with b = q + 2 - k) 

The following relations hold: 

A. The number of unisecants is T₁ = k· b 

B. The number of bisecants is T₂ = C(k,2) = k(k-1)/2 

C. The number of trisecants is T₃ = C(k,3) = k(k-1)(k-2)/6 

D. For general n-secants: Tₙ = C(k, n) = k!/(n!(k-n)!) 

E. External planes satisfy: 

T₀ = (q³+q²+q+1) - Σᵢ₌₁ⁿ Tᵢ 

Theorem 6[4]: Let Cᵢ represent the count of points with index i in PG(3,q) that are not contained 

in a (k, n)-arc A. Then the following equations govern these constants: 

1. The total number of external points satisfies: 

∑ 𝑐𝑖
𝛽
𝛼  = q3+q2+ q + 1 – k 

2. The weighted sum of indices satisfies: 

∑ 𝑖𝑐𝑖

𝛽

𝛼

=
𝑘(𝑘–  1) … (𝑘–  𝑛 + 1) (𝑞2 +  𝑞 +  1 –  𝑛) 

𝑛!
 

Here α = min{i | Cᵢ ≠ 0} and β = max{i | Cᵢ ≠ 0} represent respectively the minimal and maximal 

indices for which Cᵢ is non-zero. 
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Theorem 7[1]: A (k, n)-arc A in PG(3, q) is maximum if and only if every line in PG(3, q) 

intersects A in either 0 or n points. 

 

3. Reverse construction of complete (k, n) – arcs in PG(3,7) 

In this section, a method for constructing complete (k,n)-arcs in PG(3,7) is presented. This is 

achieved by selectively removing specific points from existing complete arcs that possess a 

higher degree, denoted as m, where the relationship  m=n+1 holds. The parameter n is 

constrained to the range 3≤n≤57, and the resulting arcs have a size k that does not exceed 400. 

Furthermore, a geometric proof is provided to establish that the smallest possible complete (k,n)-

arc in PG(3,7) is uniquely characterized as the (5,3)-arc. This conclusion is substantiated through 

the following reasoning[5,9,10]: 

3.1 The complete (k,57) – arc in PG(3,7)  

In the projective space PG(3,7), the configuration consists of 400 points and 400 planes, governed 

by the following fundamental properties: 

A. The incidence structure is uniform: every point is incident with 57 planes, and conversely, 

every plane contains 57 points. 

B. The structure of lines is uniform as well: each line comprises exactly 8 points and is 

simultaneously the intersection of 8 planes 

given this symmetric structure, the largest possible complete (k, 57)-arc, denoted A, is 

attained when its size k is 400. This maximal arc is formed by the entire set of points in the 

space. The reasoning is that since every plane already contains the maximum of 57 points 

from this set, no additional point can be excluded without violating the arc's completeness. In 

other words, there are no points with an index of zero relative to the set A₁. 

Consequently, the set A₁ = {1, 2,..., 400}, encompassing all 400 points of PG(3,7), itself 

constitutes the complete (400, 57)-arc [5]. 

 3.2 The Construction of Complete (k,56) – arc in PG(3,7)  

A complete (382, 56)-arc A₂ can be derived from the complete (400, 57)-arc A₁ in PG (3, 7) by 

removing 18 specific points from A₁, namely: 

 

P₁ = [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 23, 30, 37, 44, 51]. 
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This construction ensures that: 

A. A₂ = A₁ \ P₁ (i.e., A₂ consists of all points in A₁ except those in P₁). 

B. Every plane intersects A₂ in at most 56 points, reducing the intersection size from 57. 

C.  Every point not in A₂ lies on at least one 56-secant, a plane intersecting A₂ in exactly 56 

points. 

Thus, A₂ is a complete (382, 56)-arc in PG (3, 7)[9]. 

3.3 The Construction of Complete (k,55) – arc in PG(3,7)  

  A complete (371,55)-arc A₃ can be formed in the projective space PG(3,7) by removing 11 

additional points from the previously defined (382,56)-arc A₂. The excluded points are: 

P₂ = [17, 18, 19, 20, 21, 22, 24, 31, 38, 45, 52]. 

This yields the new arc:  

A₃ = A₁ \ (P₁ ∪ P₂), 

 Where A₁ is the original (400, 57)-arc and P₁ was the first set of 18 removed points. Key 

Properties of A₃: 

1. No External Points Are Excluded: 

Every point not in A₃ lies on at least one 55-secant plane (i.e., no points have an index of zero). 

2. Plane Intersection Constraint: 

Any plane in PG(3,7) intersects A₃ in at most 55 points ,reduced from 56 in A₂. 

Thus, A₃ is a complete (371,55)-arc, demonstrating a further refinement of the initial arc 

structure. 

3.4   The Construction of Complete (k, 54) – arc in PG (3, 7)  

The complete (371,55)-arc A₃ in PG(3,7) can be further reduced to construct a complete (362,54)-

arc A₄ by removing 9 specified points from A₃, namely: 

P₃ = [25, 26, 27, 28, 29, 32, 39, 46, 53].  

This produces the new arc: 

A₄ = A₁ \ (P₁ ∪ P₂ ∪ P₃),  

Where: 

1. A₁ is the original (400,57)-arc, 

2. P₁ (18 points) and P₂ (11 points) were previously removed to obtain A₂ and A₃ 

 Respectively 

 Essential Properties of A₄: 

1. Completeness Condition: 
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Every point not in A₄ lies on at least one 54-secant plane (ensuring no points have index zero). 

2. Intersection Bound:  

Every plane in PG(3,7) meets A₄ in at most 54 points (strictly enforcing the arc's defining 

property).Thus, A₄ is a complete (362,54)-arc, demonstrating another step in the progressive 

refinement of the initial arc structure. 

3.5 Constructing a Complete (355, 53)-arc in PG (3, 7): 

In this section, we derive the complete (355,53)-arc, denoted as A5A_5A5, in the projective 

space PG(3,7) by eliminating seven specific points from the previously constructed (362,54)-

arc 𝐴4. The points to be excluded are: 

P₄ = [33, 34, 35, 36, 40, 47, 54]. 

Thus, the resulting arc 𝐴5 is defined as: 

A₅ = A₁ \ (P₁ ∪ P₂ ∪ P₃ ∪ P₄), 

Where: 

1. A₁ is the original (400,57)-arc, 

2. P₁, P₂, P₃ are the sets of points removed in prior steps to construct A₂, A₃, and A₄, 

respectively. 

Critical Properties of 𝑨𝟓: 

1. Completeness Guarantee: 

Every point outside 𝐴5 lies on at least one 53-secant plane, ensuring there are no points of index 

zero (i.e., all points outside of 𝐴5 are covered within the plane structure). 

2. Intersection Constraint: 

Each plane in PG (3, 7) intersects 𝐴5 in no more than 53 points, maintaining the arc's defining 

properties. This ensures that 𝐴5 is a complete (355, 53)-arc, representing an iterative refinement 

of the initial arc structure. 

3.6  Constructing a Complete (350, 52)-arc in PG(3,7): 

The complete (355,53)-arc 𝐴5 in PG(3,7) can be further refined to construct a complete (350,52)-

arc 𝐴6 by removing 5 specified points from 𝐴5: 

P₅ = [41, 42, 43, 48, 55]. 

Thus, the resulting arc 𝐴6 is defined as: 
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A₆ = A₁ \ (P₁ ∪ P₂ ∪ P₃ ∪ P₄ ∪ P₅), 

where: 

1. A₁ represents the original (400,57)-arc, 

2. P₁ through P₄ denote the point sets removed in previous construction steps. 

Fundamental Properties of A₆: 

1. Coverage Property: 

Every point not contained in A₆ lies on at least one 52-secant plane, guaranteeing that no 

points have index zero (complete coverage). 

2. Intersection Property: 

Every plane in PG (3, 7) intersects 𝐴₆ in at most 52 points, maintaining the arc's defining 

characteristic. This construction yields A₆ as a complete (350, 52)-arc, representing another 

systematic reduction of the initial arc configuration. 

3.7  Constructing a Complete (347, 51)-arc in PG(3,7): 

By removing the final three points from the (350, 52)-arc 𝐴6, we obtain the complete 

(347,51)-arc 𝐴7 The points to be excluded are: 

 

P₆ = [49, 50, 56] . 

This yields the terminal arc configuration: 

 

A₇ = A₁ \ (P₁ ∪ P₂ ∪ P₃ ∪ P₄ ∪ P₅ ∪ P₆) 

 Where: 

1. A₁ is the foundational (400,57)-arc 

2. P₁ through P₅ are the sets of points removed in previous steps. 

 

Verification of Arc Properties: 

1. Completeness Criterion: 

a. All points outside  𝐴7 lie on at least one 51-secant plane, guaranteeing full coverage. 

b. No points exhibit index zero relative to  𝐴7, ensuring that all points are properly accounted 

for. 

2. Dimensional Constraint: 

Every plane in PG (3, 7) intersects A₇ in at most 51 points 

This systematic reduction process continues iteratively until we ultimately obtain: 

 



 
 

 

Vol (2), Issue (3), 2025   
 
International Journal of Innovative Insights in the Social and Natural Sciences                      

9 

ISSN (P): 2960-1347          ISSN (O): 2960-1355 

 

3.8 The Construction of Complete (k, 3) – arcs in PG (3, 7)  

The final (5, 3)-arc, denoted as 𝐴55, is derived from the (6,4)-arc 𝐴54 by removing a specific 

point P55={400}. This operation results in: 

     A₅₅ = A₁ \ (P₁ ∪ P₂ ∪ ... ∪ P₅₅) = {1, 2, 9, 58, 115}  

This construction satisfies the following criteria: 

1. Intersection Bound: 

All planes in PG (3, 7) meet A₅₅ in at most 3 points 

2. Completeness Criterion: 

A. Every point outside A₅₅ lies on at least one  3-secant plane 

B. No points exist with index zero relative to A₅₅ 

We establish through geometric reasoning that the configuration adheres to the rules of 

completeness and intersection. 

1. Minimality Proof: 

A. The (5,3)-arc constitutes the smallest possible complete configuration in PG(3,7) 

B. No complete (k, n)-arc exists with k < 5 while satisfying n ≥ 3 

2. Complete Arc Spectrum: 

A. The projective space admits complete arcs across the range 3 ≤ n ≤ 57 

B. The maximal case is the (400,57)-arc (trivially comprising all points) 

C. Intermediate configurations follow the progression shown in Table 1 

3. Existence Verification: 

Each (k, n)-arc in the hierarchy satisfies: 

A. Intersection condition: ∀ planes π, |π ∩ A| ≤ n  

B. Completeness condition: ∀ p ∉ A, ∃ secant plane with exactly n points[7,9,10]. 
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n parts

3 4 5 6 7 8 10 11 12 13

14 15 16 23 30 37 44 51

17 18 19 20 21 22 24 31 38 45

52

25 26 27 28 29 32 39 46 53 9 362 54

33 34 35 36 40 47 54 7 355 53

41 42 43 48 55 5 350 52

49 50 56 3 347 51

57 59 60 61 62 63 64 65 72 79

86 93 100 107 156 205 254 303 352

66 67 68 69 70 71 73 80 87 94

101 108 157 206 255 304 353

74 75 76 77 78 81 88 95 102 109

158 207 256 305 354

82 83 84 85 89 96 103 110 159 208

257 306 355

90 91 92 97 104 111 160 209 258 307

356

98 99 105 112 161 210 259 308 357 9 263 45

106 113 162 211 260 309 358 7 256 44

121 128 135 142 149 114 163 212 261 310

359

122 129 136 143 150 116 164 213 262 311

360

123 130 137 144 151 117 165 214 263 312

361

124 131 138 145 152 118 166 215 264 313

362

125 132 139 146 153 119 167 216 265 314

363

126 133 140 147 154 120 168 217 266 315

364

127 134 141 148 155 169 170 218 267 316

365

42

41

40

39

38

37

11

11 179

190

201

212

11

11

11

11

11

223

234

245 43

4728313

3

19 328 50

17 311 49

15 296 48

2

11 272 46

1

371 55

points arcs

382 5618

11
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Table 1.Finding the different coverings of the three-dimensional projective space over the 

finite field 

 

 

 

 

177 184 191 198 171 219 268 317 366 9 170 36

178 185 192 199 172 220 269 318 367 9 161 35

179 186 193 200 173 221 270 319 368 9 152 34

180 187 194 201 174 222 271 320 369 9 143 33

181 188 195 202 175 223 272 321 370 9 134 32

182 189 196 203 176 224 273 322 371 9 125 31

183 190 197 203 226 225 274 323 372 9 116 30

233 240 247 227 275 324 373 7 109 29

234 241 248 228 276 325 374 7 102 28

235 242 249 229 277 326 375 7 95 27

236 243 250 230 278 327 376 7 88 26

237 244 251 231 279 328 377 7 81 25

238 245 252 232 280 329 378 7 74 24

239 246 253 282 281 330 379 7 67 23

289 296 283 331 380 5 62 22

290 297 284 332 381 5 57 21

291 298 285 333 382 5 52 20

292 299 286 334 383 5 47 19

293 300 287 335 384 5 42 18

294 301 288 336 385 5 37 17

295 302 338 337 386 5 32 16

339 345 387 3 29 15

340 346 388 3 26 14

341 347 389 3 23 13

342 348 390 3 20 12

343 349 391 3 17 11

344 350 392 3 14 10

394 351 393 3 11 9

395 1 10 8

396 1 9 7

397 1 8 6

398 1 7 5

399 1 6 4

400 1 5 3

7

8

4

5

6
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i 1 2 3 . . . 400

1 0 1 . . . 6

0 1 1 . . . 6

0 0 0 . . . 6

0 0 0 . . . 1

. . .

2 1 8 . . . 8

9 9 9 . . . 15

16 10 22 . . . 21

23 11 28 . . . 27

30 12 34 . . . 33

37 13 40 . . . 39

44 14 46 . . . 45

51 15 52 . . . 51

58 58 58 . . . 59

65 59 71 . . . 65

72 60 77 . . . 78

79 61 83 . . . 84

86 62 89 . . . 90

93 63 95 . . . 96

100 64 101 . . . 102

107 107 107 . . . 107

114 108 120 . . . 120

121 109 126 . . . 126

128 110 132 . . . 132

135 111 138 . . . 138

142 112 144 . . . 144

149 113 150 . . . 150

156 156 156 . . . 162

163 157 169 . . . 168

170 158 175 . . . 174

177 159 181 . . . 180

184 160 187 . . . 186

191 161 193 . . . 192

198 162 199 . . . 198

205 205 205 . . . 210

212 206 218 . . . 216

219 207 224 . . . 222

226 208 230 . . . 228

233 209 236 . . . 234

240 210 242 . . . 240

247 211 248 . . . 253

254 254 254 . . . 258

261 255 267 . . . 264

268 256 273 . . . 270

Pi

Lines
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Table 2. Lines and planes of the three-dimensional projective space over the finite field 

Conclusion 

In this paper, we presented the inverse construction method for complete (k, n)-arcs in the 

projective 3-space PG(3,7) over the Galois field GF(7). We constructed a full hierarchy of 

complete arcs, ranging from the maximal case (400, 57) down to the minimal configuration. A 

geometric proof was provided to show that the smallest possible complete (k, n)-arc in PG(3,7) is 

uniquely realized as a (5,3)-arc. This method extends the existing classifications of arcs in finite 

projective spaces and offers a systematic framework for their inverse construction and analysis. 

References 

[1] F. F. Kareem and S. J. Kadum, "A(k,ℓ)−span in three Dimensional projective space 

PG(3,p) over Galois Field where p=4," College of Education Ibn-Al-Haitham, University 

of Baghdad, Iraq, 2013. 

[2] F. C. Langbein, "Beautification of Reverse Engineered Geometric Models," 

Department of Computer Science, Cardiff University, United Kingdom, 2003. 

[3] R. A. S. Al-Jofy, "Complete Arcs in a Projective Plane Over Galois Field," M.Sc. 

thesis, College of Education Ibn-Al-Haitham, University of Baghdad, 1999. 

275 257 279 . . . 276

282 258 285 . . . 282

289 259 291 . . . 295

296 260 297 . . . 301

303 303 303 . . . 306

310 304 316 . . . 312

317 305 322 . . . 318

324 306 328 . . . 324

331 307 334 . . . 337

338 308 340 . . . 343

345 309 346 . . . 349
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